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of fast-ignition laser fusion. The algorithm addresses the propagation and absorption of an
intense electromagnetic wave in an ionized plasma leading to the generation and transport
of an energetic electron component. The energetic electrons propagate farther into the
plasma to much higher densities where Coulomb collisions become important. The high-
density plasma supports an energetic electron current, return currents, self-consistent
electric fields associated with maintaining quasi-neutrality, and self-consistent magnetic
fields due to the currents. Collisions of the electrons and ions are calculated accurately
to track the energetic electrons and model their interactions with the background plasma.
Up to a density well above critical density, where the laser electromagnetic field is evanes-
cent, Maxwell’s equations are solved with a conventional particle-based, finite-difference
scheme. In the higher-density plasma, Maxwell’s equations are solved using an Ohm’s
law neglecting the inertia of the background electrons with the option of omitting the dis-
placement current in Ampere’s law. Particle equations of motion with binary collisions are
solved for all electrons and ions throughout the system using weighted particles to resolve
the density gradient efficiently. The algorithm is analyzed and demonstrated in simulation
examples. The simulation scheme introduced here achieves significantly improved
efficiencies.
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1. Introduction

The interaction of intense laser light with plasma leads to diverse phenomena of interest for applications such as laser
fusion. The numerical simulation of laser-plasma interactions in multiple dimensions with the inclusion of kinetic effects
is challenged by the large range of spatial and temporal scales [1-3]. The time step in particle-in-cell (PIC) simulation of plas-
mas using standard techniques must resolve the plasma oscillation everywhere, w,.At < O(1) for stability; the time step
must resolve the laser frequency, woAt < O(1) for accuracy; the spatial mesh must resolve the electron Debye length,
Ax/4. < O(1) depending on the order of the spatial interpolation [1], and the collisionless skin depth, Axcwp./c < O(1), every-
where to control self-heating and ensure accuracy; and the Courant conditions on the speed of light and the particles must
be resolved, cAt/Ax < 1 [1].

In fast-ignition laser fusion [4] optical-wavelength laser light is incident on a plasma spanning a range of densities from
vacuum to densities exceeding solid densities. If we consider plasma densities that are 10°—10* times the critical density n,
where the laser frequency w, equals the local electron plasma frequency @, and n. = 1.1 x 10*'cm3 for a 1 um laser
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wavelength, then the constraints on using standard particle simulation techniques solving Maxwell’s equations and particle
equations of motion using explicit time-integration methods are formidable. In consequence, many studies separate the sim-
ulation of fast ignition into fully electromagnetic studies of the laser-plasma interaction going from vacuum to densities
somewhat higher than the critical density [5-8] and then address the simulation of the transport of the fast electrons gen-
erated by the laser absorption occurring near the critical density to very high densities in a separate simulation using a
reduction of Maxwell’s equations [9-12]. Here we introduce an algorithm that combines a conventional fully electromag-
netic PIC simulation where the plasma is completely described in terms of particles and where the fields are solved with
a reduced model in the high-density plasma. The composite algorithm marries the simulation of the laser-plasma interac-
tion with the simulation of the electron transport, and thus seeks to be a more integrated simulation of fast ignition: the
electron transport calculation is driven by the self-consistent absorption of the laser and the concomitant self-consistent
generation of the fast electrons; the background plasma responds kinetically; and heat is transported self-consistently
[9-12].

Other approaches to the simulation of fast ignition in a plasma density gradient have been exercised with varying degrees
of success. In the work of Sentoku and Kemp [13], the plasma density is clamped in such a way as to limit the plasma fre-
quency for purposes of accumulating charge densities and current densities to be used in solving Maxwell’s equations, i.e. an
artificial upper bound is imposed on the plasma and current densities. However, the local electron and ion densities are al-
lowed to climb to much higher values for purposes of computing collisions. The cutoff on the plasma density limits how large
wpeAt and how small the skin depth c¢/w,. become, which helps the simulation remain well behaved and relaxes the de-
mands on computer resources. However, the calculated electric fields associated with the plasma currents are no longer con-
sistent with the actual density influencing the collisions; and thus the resistive heating in the plasma is inconsistent in the
region where the actual density exceeds the artificial cutoff. The algorithm that we present here has no artificial density cut-
off and attempts to model the electromagnetic fields, collisions, and density gradients consistently.

Implicit particle simulation methods [3,14-21] underly a number of kinetic plasma simulation codes and are being used
in studying fast ignition. [22] Implicit PIC permits the use of large values of w,.At subject to resolving wave and particle Cou-
rant conditions for sake of accuracy and controlling numerical heating and cooling [18,23,24] The implicit PIC algorithms
alter the dielectric shielding in a plasma due to finite wﬁEAtz. However, the numerical modification of the shielding is small
if wf,eAtz < 1/I<2 % [24]. In the underdense region of the plasma, where wye < @y, it is important to track the propagation and
absorption of the laser accurately; and care should be taken in using an implicit PIC method so that it does not significantly
damp the electromagnetic wave because of numerical dissipation [3,18,21].

Hybrid methods, wherein the plasma is composed of both fluid and particle species, have been used with success in many
applications; and there is a mature literature [9-12,25-29]. The use of fluid equations to represent a major component of the
plasma, such as, for example, the background electrons, while other components of the plasma are represented with a kinetic
model, is well motivated if the kinetic features of the fluid species are ignorable, e.g. if the fluid species is cold or so colli-
sional as to be well approximated as a Maxwellian. The fluid representation introduces a computational efficiency by reduc-
ing the number of species requiring a kinetic description and/or by reducing the range of time and/or space scales. Important
additional efficiencies may be accrued by introducing well-motivated analytical reductions of the fluid equations for the
fluid species, such as omitting inertial effects when the response of the fluid species can be approximated as adiabatic, col-
lisional, or dominated by E x B drifts [10-12,25-28]. However, the fluid representation inevitably involves some closure
approximation and loss of kinetic detail. Here we will exploit the use of reduced fluid equations to limit the kinds of
high-frequency wave phenomena that can occur, but we will retain a kinetic description of all species. In some respects,
a similar point of view is taken in the implicit-moment simulation methodology [15,16,22,30].

In Fig. 1 we illustrate the two-region nature of our algorithm. In the region of the plasma for electron densities n, < 100n,,
we solve the complete set of Maxwell’s equations in finite-difference form [1,31,32] with relativisitic equations of motion for
the plasma particles with binary collisions [13] for all of the electron and ion species throughout the domain. This description
of the physics is valid if appropriate time steps, cell sizes, and statistical resolution are employed. At higher densities with a
sufficiently cold background plasma, the plasma can become sufficiently collisional such that the plasma does not support
high-frequency waves. The relatively cold background electrons are maintained close to a drifting Maxwellian and react to
maintain quasi-neutrality (producing return currents to neutralize the energetic electron current driven by the laser absorp-
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Fig. 1. Schematic of plasma density gradient showing the low and high-density regions in which different field equations are used.
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tion). There can be significant self-magnetic fields due to currents in the plasma. The cold, resistive electrons in the back-
ground plasma in the high-density region are well described by an Ohm’s law with electron inertia neglected (Section 2).
The Ohm'’s law gives us a prescription for the self-consistent electric field related to the current in the resistive background
plasma, while Ampere’s law with the option of dropping or retaining the displacement current relates the sum of the back-
ground plasma and fast-electron currents to the curl of the magnetic field. With explicit accumulations of the plasma ion and
energetic electron currents from the particle data, Ampere’s law gives us a prescription for the background electron current
without having to accumulate the electron current on the grid in the high-density region. Faraday’s law then relates the time
derivative of the magnetic field to the curl of the electric field, which is used to update the magnetic field.

The resistive magneto-hydrodynamic (MHD) model proposed here for the background electron response in the high-den-
sity, collisional limit based on Ohm’s law has been previously introduced and justified by several authors [10-12]. The re-
duced equations are shown to recover the results of the solution of the complete Maxwell equations in an intermediate
density region, n. < n, < (50—100)n, except that the reduced equations are less affected by particle noise. For even higher
electron densities n, = 50—100n, the reduced equations are used exclusively. By dropping electron inertia in Ohm'’s law, the
reduced equations in the high-density region are not subject to the restrictions that the plasma frequency, electron Debye
length, and collisionless skin depth must be resolved. Numerical dissipation is easily controlled in both the low and high-
density regions. An important physics element is that the resistivity in the Ohm’s law should be self-consistent with the Cou-
lomb collision operator influencing the particle motion; thus, a good quality collision operator is required [13]. An important
distinction in our approach as compared to the model considered in the work of Davies [10], Gremillet et al. [11], and Hon-
rubia and Meyer-ter-Vehn [12] in the high-density, collisional plasma region is that we retain a particle description for all of
the electrons and ions in the plasma. The particle description for the background plasma in both the low and high-density
plasma domains provides a natural distributed source for kinetic return currents throughout the system and a prescription
for determining when a background electron should be promoted to a fast electron and vice versa, and the resistive heating
of the background plasma is accommodated in a natural way in the presence of binary collisions using the collision operator
introduced by Sentoku and Kemp [13]. A particle is called fast if its velocity exceeds a(T,/m.)"/?, where « is a free parameter
(we find o = 5 works well) and T, is the local electron temperature. We will describe the model more completely in the next
section.

In this study we restrict ourselves to a model for the plasma that assumes that the plasma parameter n./; > 1 where n, is
the electron number density and /. is the electron Debye length. Our representation of the collisional processes in the plas-
ma, the use of a classical resistivity model, and our evaluation of terms in the electron momentum fluid equation for the
background electrons depend on the assumption that the high-density region is a weakly coupled plasma. In fast-ignition
scenarios the assumption that the plasma is weakly coupled can break down, i.e. the plasma parameter is no longer large
in some regions of the space-time domain. In such a circumstance both the collision model, the resistivity and other terms
in Ohm’s law must be modified to take into account the proper physics of the warm dense matter [10-12]. Such modifica-
tions can be made within the framework we introduce here, but we will defer this to future work; here we restrict our model
to the case of a weakly coupled plasma with a classical Coulomb collision model for sake of simplicity.

An outline for the rest of the paper is given as follows. In Section 2 the framework for the simulation model is introduced
in detail, and equations are presented. An analysis of the properties of the algorithm is presented in Section 3. Model sim-
ulations are also presented that address some of the numerical issues in the algorithm in a minimal rendering of the new
framework. In Section 4 one-dimensional and two-dimensional PIC simulations using the PSC code [31,32] extended to
incorporate the new framework for low and high-density plasma are presented. Comparisons are made between conven-
tional, first-principles PIC simulation and simulations with the two-region model. Our two-region model allows the use
of less spatial resolution at high densities where the electromagnetic skin depth becomes small and a larger time step be-
cause certain numerical constraints are relaxed. This is illustrated in a one-dimensional example with an improvement in
computational speed in excess of 40x. In two dimensions the improvement in computational speed realized in our example
simulations is >500x. Our implementation of the two-region framework in the PSC code is a work in progress in some re-
spects, and the research is ongoing. A summary and conclusions are presented in Section 5.

2. Algorithm equations

In conventional electromagnetic PIC simulation with explicit time integration, such as in the PSC code [31,32], the electric
and magnetic fields are laid down on a staggered grid; and the two curl equations in Maxwell’s equations, Ampere’s and Far-
aday’s laws, are solved to advance the electric and magnetic fields, respectively:

OE
S =V xB-47 (1)
0B
E:*CVXE (2)

Some care is given to charge conservation in obtaining the current J [1,32-34]. Charge conservation in the PSC code is de-
scribed in Section 4.5.2 of Ref. [32]. In our model, relativistic particle equations for fast electrons, background electrons,
and background ions with full Newton-Lorentz forces and a binary collision operator [13] are used throughout the system.



4594 B.I. Cohen et al./Journal of Computational Physics 229 (2010) 4591-4612

(a) Electron density along axis at 93fs  (b) Telmperature along axis Iat 93fs (g)mEolectric field along a:xis at 93st
iy . 10 dp et ’ susboasstenrelos)
E n |
100.0 = - . | -
- : - \ - 0.005
Target: Cu™ | -
EU 100 n=360n, ';05 L. E\JO.OOO A
» Laser pulse: N \ L .
=
5x10W fem? = ]
10 = Swhie -0.005
[T LT 0.0 ittt 0.010 Veaguenrpenrepeey
10 20 0 10 20 0 10 20
z[rm] z[mm] z[mm]

Eo=3x1072V/m

Fig. 2. One-dimensional PSC conventional PIC simulation of laser absorption in a plasma density gradient. (a) Plasma density gradient. (b) Electron
temperature at 93.348 fs vs. z with initial background temperature 100 eV. (c) Longitudinal electric field E, vs. z at 93.348 fs shown in black with n]'z’ shown
in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.).

If the time step and the mesh spacing are chosen to resolve the plasma and light-wave frequencies, the Debye length, and
skin depth throughout the domain and there is adequate statistical resolution, then a conventional simulation can track laser
absorption and the transport of energetic electrons up to some modest plasma density. Use of higher-order spatial interpo-
lation methods allows the mesh size to be larger than the electron Debye length without engendering excessive self-heating
[1] at the expense of losing the ability to resolve scales of order or less than the electron Debye length, which are relevant to
Debye sheaths and some wave dispersion effects. The PSC code uses linear area weighting for its interpolation scheme [1,32].

In Fig. 2 is shown a conventional particle simulation in one dimension (1D) using PSC with binary collisions, 200 cells per
micron, 100 ion particles per cell, and 400 electron particles per cell (Z = 4 for copper) in which 1 pm laser light is absorbed
in a plasma density gradient with densities < 360n.. This simulation describes the interaction of a 40 fs fwhm Gaussian
shaped laser pulse with a peak intensity of 5 x 10' W/cm? at a wavelength of 1 um with a copper target at a (constant) ion-
ization state Z = 4. The target features an exponential density gradient with a scale length of 1.5 pm between electron den-
sities n, < n. and 4 x 102 cm3 followed by a density plateau of 15 pm length. To minimize the effect of numerical heating
we used a resolution of 200 cells per micron and 100 particles per cell. The boundary conditions for particles and fields at the
end of the box are ‘absorbing’ in the sense that particles are reflected at thermal velocities.

We note that for densities in excess of n, ~ 10n. in the one-dimensional simulation shown in Fig. 2 the electric field
component E, is well approximated by the resistive relation E, = 17]3 allowing for the particle noise in the simulation
that contributes to the electric field, where #=m.V.i/n.e? is the classical resistivity [35], Ve =0.51/7q,7;! =
4\27In Ae4Zi2ni/(3\/ﬁeT§/2) is the classical electron-ion collision frequency, and ]’Z’ is the sum of the background electron
and ion currents. The E, = n]f evaluation plotted in Fig. 2 is inferred for this simulation; PSC uses E, determined by Maxwell’s
equations from first principles. The total J, current is zero to very good approximation. Hence, j’z’ = 7]§ where j§ is the fast-
electron current. The agreement of the electric field with the resistive relation is not so surprising when we consider the
equation describing momentum conservation for the relatively cold background electrons and recognize that the cold back-
ground plasma is collisional:

NeiMe (2 + Ve - V) Ve = *eneE - nemevei(ve - Vi) — eNeVe X B/C - Vpe + <g> Pmam,e (3)
ot dt coll.e—f
where v, ; are the fluid velocities for the background electrons and ions, n.; is the background electron or ion density, p, is the
electron pressure (assumed a scalar here, but could be a tensor more generally), and the last term accounts for conservation
of the collisional momentum being exchanged due to collisions of the fast electrons with the background electrons. The re-
sult observed in Fig. 2 suggests that the first two terms on the right side of Eq. (3) are the dominant terms in the high-density
plasma, and balancing these two terms yields E = #(J, +J;), where ], ; are the electron and ion contributions to the current
from the background plasma exclusive of the fast-electron current. In writing Eq. (3) we tacitly assume that the plasma is
weakly magnetized. The results at high density shown in Fig. 2 motivate the use of the reduced form of Eq. (3), i.e. an Ohm’s
law. In general, the third term in Eq. (3), the v, x B term, is included in two-dimensional simulations.
When there is a significant magnetic field present, the friction force of the ions on the electrons leads to a tensor
resistivity #,

1 =n,bb +n, (I-bb)—1n,(bx) (4)

A prescription for the tensor resistivity has been given in Section 4 of Braginskii’s review article, which includes the depen-
dence of the resistivity tensor on the product of the electron cyclotron frequency and the characteristic electron-ion collision
time, and on the charge state of the ions (see Eq. (4.30) and Table 2 in Braginskii [35]). In our simulations we have devised a
simple interpolation formula to fit Table 2 in Braginskii’s article, which gives the dependence of # on the ionic charge state:
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Epperlein and Haines have calculated corrections to Braginskii’s transport coefficients that are significant for Q.7,; > 1 [36].
The parameters in consideration for the fast-ignition simulations of interest to us satisfy Q.7.; < 1 in the high-density region
in our model, and the corrections calculated by Epperlein and Haines are small (less than a few percent). Moreover, for these
small magnetic fields (2.7, < 1), then x < 1 in the Braginskii tensor resistivity and the resistivity becomes a scalar, = 7,
which simplifies the Ohm’s law. The magnetic field and plasma parameters used in the Braginski tensor resistivity are as-
sumed to vary on time and space scales that are longer than the characteristic electron-ion collision time and the electron
Larmor radius.

In fast ignition, when the electron transport in solid densities encounters higher and perhaps colder matter, the plasma
parameter, 11,42, may no longer be large. In this case the electron collisions are modified from classical Coulomb collisions in
a weakly coupled plasma, which will alter the particle collision model and the self-consistent expression for the resistivity
(derived from the electron-ion frictional force due to collisional drag) [10-12]. The framework introduced here should be
able to accommodate these modifications, but we do not attempt this here.

We now assess the relative strengths of the various terms in Eq. (3) for parameters typical of fast-ignition calculations
based on radiation-hydrodynamics simulations and experiments for conditions after the plasma has been compressed but
before fast electrons generated by the intense, short-pulse laser have heated the background high-density plasma:
T.=T;=100eV,n, > 10°n. = 10> cm~3, and scale length | ~ 100 pm in a hydrogen plasma. For these parameters 2, ~
2x 1078 cm, c/mpe ~ 2 x 107% cm, wpe ~ 2 x 10" 71 wy ~ 2 x 10" s, a  characteristic ion acoustic frequency
(Ae/N)cwpi ~ 10" 571, and characteristic collision frequencies v, ~ 5 x 10" s=! and v; ~ 8 x 10"® s~!. The parameters chosen
are somewhat arbitrary, but are intended to be representative. At this density the electron plasma and ion acoustic waves
are significantly damped by collisions. As the plasma density increases, the electron plasma frequency increases proportional
to \/Me; the acoustic frequency is approximately invariant if T, is relatively constant; and the collision frequencies increase
approximately linearly in n,.. Thus, the collisional damping of the longitudinal waves is more pronounced as the density in-
creases. Before comparing the terms in Eq. (3), we divide both sides by (n.m,.). We assume that the high-density plasma
background evolves on the transport time scale as dictated by the collision processes. The axial motion of the background
electrons provides a return current to neutralize the fast electrons. An upper limit on the fast-electron current is set by argu-
ing that the velocity of the fast electrons cannot exceed c, the speed of light; and its density cannot much exceed the density
of all of the electrons near the critical density, n.. Then at the higher densities the background plasma’s return current is
bounded in magnitude very approximately by en.c, and the drift velocity of the background electrons is then limited in mag-
nitude to (n./n.)c. The inertia terms on the left side are then (9/9t + Ve - V)ve — (O(w) + O(v,/l))v,, where v, < (n./n.)c,
W< wg~2x10" s, and v/l < (n./ne)c/l ~ (n:/n.)3 x 10" s~1. The electric field term is assumed to balance the elec-
tron-ion drag term (leading directly to # - J), which is of order v, v, ~ 5 x 10" s~ v,. The Lorentz force term on the right side
of the Ohm'’s law is of order Q. v, < Wo?e ~ 2 x 10”° s 1y, if a signficant magnetic field arises with electron cyclotron fre-
quency of order the laser frequency as is observed in simulations [12]. This term is smaller than the drag term but is
non-negligible. The magnitude of the pressure term can be estimated as (T./m.)/l ~ 2 x 107*c2/l ~ 6 x 10® s~!c and is rel-
atively small unless a steep gradient should form. The collisions of the fast electrons on the background electrons lead to
the last term on the right side of Eq. (3) which is small in (ng/n.)(y,¢/v.)(vr/ve) Where 1y is the density of fast electrons
ny < ng, 7y is the relativistic factor for the fast electrons, and vy is the characteristic collision frequency of the fast electrons,
Vr < ve. We will also omit this momentum exchange term in the simulation examples.

For fast-ignition simulation in high-density collisional plasmas we drop the inertia terms on the left side of the Eq. (3) and
recast the resulting Ohm’s law in the following form for the background plasma:
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E— 110, +0) - Ve x B/c = Vpu/(en) + () Prone/(ens) )
coll.e—f
This equation will yield an explicit, algebraic determination of the electric field. We are using a scalar pressure p, = n.T, in
the Ohm'’s law in our high-density hybrid model, which can be generalized to a tensor pressure with no difficulty.
In keeping with the reduction of the Ohm’s law based on the dominance of collisional effects in the high-density region of
the plasma (n. > n.), we drop the displacement current in Ampere’s law, Eq. (1), and recast that equation to solve for the
sum of the electron and ion currents in the background plasma exclusive of the fast-electron current J;,J. +J; =J - J;,

Jo+)i= 2=V xB-J, 7)

J is the current from the fast electrons (those with speeds > o(T./m,)'/?). The sum of the electron and ion currents in the
background plasma is used in Eq. (6), which determines E in the high-density region. Charge conservation and the relation
between the charge density and the current accumulations for the fast electrons and the ions are handled in the high-density
region exactly as in the low-density region [32]. However, in the high-density region Eq. (7) is used to solve for J,; and ], is
not accumulated on the grid except as a diagnostic.

In the absence of the displacement current in Ampere’s law, we can take the divergence of Eq. (7) to arrive at
V- (J. +Ji +];) = 0. Use of the continuity equations then leads to the constraint on charge neutrality from which we calcu-
late the electron charge density:

ne = Zn; — ny 8)

where n; and ny are the ion and fast-electron charge densities accumulated directly from the particles on the grid. Use of n,
from Eq. (8) in Ohm’s law binds the electron density and the electron dynamics to the overall charge neutrality constraint in
the high-density plasma. This deduced charge density should be a good approximation to the charge density from the back-
ground electrons accumulated on the grid. Eq. (8) is one prescription for determining n. in Ohm’s law. Alternatively we can
use the n, determined directly from the particle electrons with and without a correction to the background electron particle
drift so that the total current is consistent with Ampere’s law in the high-density region in each cell. It is these latter two
options that we employ in the PSC PIC-hybrid simulations. Note that the divergence of Ampere’s law plus the continuity
equation implies Poisson’s equation (and quasi-neutrality if the divergence of the displacement current is small). Because
we are dividing by the electron density 1. in certain terms on the right side of the Ohm’s law and computing the gradient
of the scalar electron pressure n.T., we find that temporally or spatially smoothing . is needed to deal with particle noise. In
doing time averages we use a simple lag average over a few laser cycles, (n,)" = an? + (1 — a)(n.)""' where 1/ is the mem-
ory in time steps of the lag average. We will compare the grid-interpolated particle electron current in the full PIC and two-
region hybrid simulations in Section 4.

The remaining terms on the right side of Eq. (6) are determined as follows. The background electron mean drift can be
determined in either of two ways. A direct calculation can be made from the first moment of the particle electrons accumu-
lated locally on the spatial grid, which has to be computed as part of calculating the local electron temperature from the
background electrons. An alternative means is to subtract the fast-electron and ion currents explicitly accumulated from
the particles from the sum of the electron and ion currents to obtain the electron current J,, from which v, = —J,/(en,).
The background electron temperature is computed from the time-dependent second velocity moment of the background
particle electrons deposited on the spatial grid. The second velocity moment can be noisy and require spatial and/or tempo-
ral smoothing. There is significant relevant experience with the pressure term reported in the literature on the implicit-mo-
ment method [15,16,30]. The resistivity coefficient in the Ohm’s law depends explicitly on the background electron
temperature, which is determined from the particle representation of the background electrons and evolves as the electrons
cool or heat. The term associated with the collisional momentum exchange of the background electrons with the fast elec-
trons in Eq. (6) could be computed directly from the particle collisions between the fast and background electrons.

The prescription given here for the evaluation of the electric field from Ohm’s law using moments of the particle velocity
distributions emulates some of the philosophy of the implicit-moment equations method, while incorporating some physics-
based simplifications of the Ohm’s law appropriate for studying the macroscopic-timescale transport of the fast electrons in
the high-density collisional plasma. The simplifications used in the Ohm’s law, i.e. omitting the electron inertia terms and in
some cases retaining only the first two or three terms on the right side of Eq. (6), as motivated by consideration of the phys-
ical parameters encountered in the collisional high-density fast-ignition plasmas, share a common basis with earlier work
using hybrid algorithms [10-12,25-28].

From the curl of E in Eq. (2) the magnetic field is updated throughout the low and high-density regions. With E and B
determined, the particle equations of motion are advanced for the trajectories of the fast electrons and the background plas-
ma electrons and ions throughout the plasma. The fast electrons are differentiated from the assumed near-Maxwellian back-
ground electrons by having been heated by the laser when the laser is absorbed near the critical density. The contribution to
the total current from the fast electrons is computed at every time step. To differentiate the fast electrons from the colder
background electrons in the low-density region, when an electron achieves a speed exceeding 5./T./m,. in the background
plasma, where the background scalar electron temperature T, is computed locally from the background particle electrons at
the previous time step, the electron is declared to be a fast electron until its speed drops below this threshold. Note that the
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threshold speed is allowed to evolve with the scalar electron temperature T.(X, t). The choice of 5,/T./m, for a cutoff is suf-
ficient to capture the lowest moments of the background electron velocity distribution up through the heat flux to high de-
gree of accuracy. We can calculate the density, mean drift, scalar pressure, and scalar temperature moments of the
background particle electrons to evaluate quantities on the right side of the Ohm’s law, Eq. (6), as needed.

With relatively little additional effort the displacement current can be restored in Eq. (7) and a reasonably straightfor-
ward solution for the electric field can be obtained:

3+ = (c/4m)V x B" — J} — (E""'/? —E"'7?) /47At 9)
E' =n(i+J})— (en) 'Vp! —v" xB"/c (10)
EY'2 =2 - (1-e)E"?)/(1+6) an

Egs. (9) and (11) are used in Eq. (10) to determine E*. These equations are linear in E™*'/? and merely require an algebraic
solution. By including the displacement current, we include charge separation effects. In place of Eq. (8), taking the diver-
gence of Ampere’s law including the displacement current and using the continuity equation lead to the following form
of Poisson’s equation to determine the background electron charge density in the high-density region:

ng =Zn! —n} -V -E'/4ne (12)

For simplicity in solving the Ohm’s law for the electric field, we suggest that the calculation of n, from Eq. (12) use an explicit
electric field E' = E"'/? in the computation of the —V - E' /4me term. The analysis and examples presented in the following
sections of this paper only address the algorithm based on Eqs. (2)-(7) except where noted. With the displacement current
included as described, analysis indicates that the important stability constraints and all of the accuracy constraints associ-
ated with the explicit solution of the high-density model equations excluding the displacement current persist.

In the implementation of our two-region model, we advance the particle equations of motion with binary collisions
throughout the domain. In the low-density region and over a few cells (controlled as an input parameter) beyond the
interface between the regions, Ampere’s law is solved in conventional explicit fashion to update the electric field. On the
high-density side and over a few cells on the low-density side of the interface between regions (also controlled as an input
parameter), Ampere’s and Ohm'’s laws are solved simultaneously for the electric field. The solution for the electric field is
algebraic and requires no internal boundary condition at the interface between regions. In the region near the interface
where two alternative expressions for the electric field are available, we have the following options: spatially interpolate
between the two solutions, spatially smooth the electric field in the region around the interface, or use the low(high)-density
solution on the low(high)-density side with no interpolation or spatial smoothing. Faraday’s law is solved throughout the
domain to update the magnetic field from the curl of the electric field. Conventional boundary conditions on the electromag-
netic fields and the particle motion at the system boundaries are used.

Energy conservation and flow in the high-density region differ from that in the low-density region as follows. The con-
tinuum equations in the low-density region yield the standard relations:

8<E2 Bz):E-]cV-EXB (13)

AT AR an

where ] = 3" J, and the sum is over all species s computed locally in space; and in the absence of explicit sources and sinks of
plasma kinetic energy, the time derivative of the (relativistic or non-relativistic) kinetic energy density KE; for each species
satisfies
d
T KE=E-, (14)
where s designates the species.
The continuum equations in the high-density region (omitting the displacement current) yield

3<Bz>_—E.J—cv-EXB (15)

ot \ 87 41

where J =J; +J. +J;. We can then use Eq. (6) to evaluate E. In the limit that the resistivity dominates the right side of Eq. (6),
we obtain the following relation:

d [ B ExB
m<8n> =-J-n-(J.+J)—cV: an (16)

and Ampere’s law is used to evaluate J, viz.,, J = ¢V x B/4m. However, Eq. (14) still dictates the relation between the Joule
heating E - ], involving the particle currents and the time derivative of the kinetic energy densities of each species. In the
high-density region with the displacement current omitted, the field energy is composed only of the magnetic energy, which
is dissipated in part by resistive heating of the background plasma if there is a net current and can be driven up or down by
the net electromagnetic flux through the boundaries of the domain.
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In the high-density plasma the reduced field equations support neither light waves nor electron plasma waves because of
the high collisionality, the neglect of electron inertia in the Ohm'’s law, and the omission of the displacement current in Am-
pere’s if this option is used. The reduced Maxwell’s equations can be described as the Darwin, quasi-neutral limit of Max-
well’s equations when the displacement current is omitted. The reduced equations support self-consistent magnetic and
electric fields arising from the currents in the plasma, charge polarization, and kinetic return currents to maintain quasi-neu-
trality for long wavelength and low-frequency phenomena. The electric and magnetic fields are assumed continuous across
the boundary between regions, which requires that the Ohm’s law and the neglect of the displacement current be good
approximations near the boundary between the two regions. The particle equations of motion for the fast electrons and
the background plasma are integrated across the entire domain without regard for the boundary between the two regions.
Thus, the particle fluxes and currents throughout the plasma are reasonably continuous, and the resistive heating of the
background plasma is modeled with a kinetic description. Coulomb collisions [13] of the charged particles are modeled
throughout with sufficient accuracy so that there is consistency with the resistivity in the Ohm’s law. Fig. 2 illustrates that
this is possible.

By using a reduced physics model in the high-density, collisional plasma, we intentionally abdicate the ability to simulate
all of the physics that is supported by a more complete set of equations. For example, electron plasma oscillations and light
waves are not admitted by the equations used in the high-density region. In consequence, electron two-stream and electron
beam-plasma instabilities cannot occur in the high-density plasma. However, owing to the high collisionality (the electron-
electron and electron-ion collision frequencies are substantial fractions of the electron plasma frequency) the high-density
plasma is stable with respect to these instabilities. In contrast, an instability like the ion-acoustic drift instability could occur
in our high-density model equations if the relative drift of warm electrons with respect to the ions exceeds the ion sound
speed and if ion-ion collisions and gradients that affect the instability are not too strong. Furthermore, our equations also
allow low-frequency Weibel-like and current filamentation instabilities to occur in both the low and high-density regions.

3. Analysis of the algorithm

To understand what numerical constraints apply to the reduced equations in the high-density region, we introduce a
model set of finite-difference equations and analyze some of the properties of these difference equations in this section.
The model finite-difference equations capture the main elements of the high-density equations. We also present some re-
sults from the numerical solution of the model finite-difference equations. The analyses provide insight into the numerical
properties of the algorithm: numerical stability, dispersion, and accuracy. Here we focus just on the time-integration issues
and introduce difference equations in time

L +) = (c/An)V xB" - J; (17)
E =0l +J") — (en?) 'VnIT! + (en®) 'J" x B"/c (18)
E"'2 =2 - (1-e)E"?)/(1+6) (19)
n+l _ pn
% — ¢V x EHH/Z, Bn+1 — ... (20)
Bn+1/2 — (Bnﬂ + BH)/Z (21)
X2 = x" +%(1 - &)V" (22)
S qAt B2 4 (v 4 vy x B2 /c) - vALY" (23)
m
n+1 n At n+1
X=X+ (14 &)y (24)

where €, are centering parameters and {X, v} are the particle positions and velocities. In Eq. (18) we have omitted the term
deriving from momentum exchange between the fast electrons and the background electrons; it is straightforward to in-
clude this term. The currents J and ]}1 are accumulated on the grid using particle data {x, v}". As written, the finite-difference
equations, Egs. (17)-(24), describe an explicit integration scheme with the displacement current term and the electron iner-
tia term in Ohm’s law omitted.

In the electrostatic limit with no background magnetic field and no fast electrons, the high-density equations admit ion
acoustic waves. From Eq. (17), ], +J; = 0, and we set n, = Zn; in Eq. (18). Using standard techniques for the analysis of the
normal modes of the finite-difference equations,[1,3,18] we linearize the difference equations, take Z =1, define
4 = EM!/E! = exp(—iwAt) for a monochromatic wave, and obtain the following dispersion relation from the determinant
of the coefficients of the system of linear equations:

=D —1+vAl)  KAP
4), - 4

where v;; is the ion-ion collision frequency, ¢? = T./m; is the square of the sound speed, T, is the electron temperature, and
the electrons are assumed to respond adiabatically. For €; = €, there are two branches of the dispersion relation:

B +e)+(1—e) G0+ 6) + (1 - 6)] (25)
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i=—1-6)/(1+6) (26)
-1 —1+vAt) K c2AP
4), T4

The mode described by Eq. (26) is a marginally stable odd-even oscillation for €; = 0 and is damped for €; > 0. Alterna-
tively, with €; = 0, occasional averaging, E""'/? = (E*"'/2 - E""'/?)/2 will remove the odd-even mode. The mode corre-
sponding to Eq. (27) is the ion acoustic wave with damping due to ion-ion collisions. With €; # €, the ion acoustic
wave can be destabilized for small values of v;. By relating n. for use in Ohm'’s law to Zn; and the ion dynamics through
the use of Eq. (8) (or Eq. (12)), then the ion dynamics and the adiabatic response of the electrons are properly married to
charge neutrality (or Poisson’s equation) to obtain the self-consistent determination of the ion acoustic wave. If instead n,
is determined by the electron particle equations and used in the Ohm’s law with no charge neutrality constraint and Am-
pere’s law is used to close the system, then a somewhat redundant description of the electrons is introduced; the coupling
of the ion dynamics back into the electric field solution is lost; and there is no ion acoustic wave. If the displacement cur-
rent is retained as in Eq. (9) and n, is determined by Eq. (12), then we recover the standard dispersion relation for ion
acoustic waves including the dispersive correction due to charge separation effects: w? = kzc§ /(1 + kzxg) in the limit that
v; =0 and At = 0.

We have integrated the model difference equations, Egs. (17)-(24), in the electrostatic limit with a small-amplitude ran-
dom noise source added to the right side of Eq. (18) and with the prescriptions that the perturbed electron density is given by
én, = —Vnpx. and the electron and ion displacements and velocities are fluid-like quantities shared by all electrons and ions
in a cell. We introduce the quantity Ny which represents the number of time steps between the occasional averaging of the
electric field at successive time steps. Fig. 3 shows the results of integrations of the model difference equations in the elec-
trostatic limit for ion acoustic waves with a finite noise source, no collisions, €; = €, =0 0r 0.02,e/m = 1,kc; = 1,N; = oo or
75, velocity amplitude perturbation s» = 10~*, and 10% random noise amplitude relative to the wave amplitude. The spatial
dependence has been Fourier analyzed, and only a single wavenumber k is retained. For kc;At = 0.1 the fluid velocity at a
given position vs. time oscillates at the acoustic frequency. With no decentering and no periodic averaging there is an excur-
sion in the electric field energy, but no numerical instability. With decentering or periodic averaging, the solutions are well
behaved.

If a small amount of decentering is introduced in the equations of motion in the finite-difference equations to control the
odd-even mode, what might this decentering do to solutions of the difference equations in the low-density region where the
electron plasma oscillation is an additional electrostatic normal mode? We replace Eqgs. (17)-(24) in the electrostatic limit
(B=0) with

— sin(wAt/2) ~ +(kcAt/2)(1 F iviAt/2) (27)
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Fig. 3. Integration of model difference equations for ion acoustic waves with kc;At = 0.1 showing the fluid velocity vs. time in units such that a wave period
equals 27, electric field vs. time (80 periods), and the electric field and kinetic energy integrals over the volume vs. time (80 periods). (a) €; = €, =0,v =0,
and Ny = co.(b) €, =€, =0,v=0,and Ny = 75. (c) €; = €, =0.02,v =0, and Ny = .
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solve for E**'/2, add a small noise source, and use Eqs. (22)-(24) for the cold-plasma, fluid-like response to the electric field.
These equations support electron plasma oscillations. Fig. 4 displays the results of integrating these equations with
wpeAt =0.1,e/m =1, wp = 1, no periodic time-averaging of successive time levels, no collisions, displacement amplitude
perturbation §x = 10~%, and 10% random noise amplitude relative to the wave amplitude, for €, = 0 and 0.02. The fluid dis-
placement oscillates at the electron plasma frequency. The decentering contributes a small amount of damping scaling with
€2y At. In the absence of physical dissipation there is no fluctuation-dissipation theorem [1] for the model system, and the
random noise source causes a weak secular growth of the field and kinetic energies.

Fig. 5 shows results from simulations of laser absorption in a density gradient in two spatial dimensions with the PSC
code including the decentering parameter €, in the equations of motion. These simulations model the interaction of a
semi-infinite laser pulse with a short rise time of 30 fs and a peak intensity of 10° W/cm? with a short plasma density gra-
dient and a peak density of 100n.. The simulations were performed at a resolution of 50 cells per wavelength and 100 par-
ticles per cell. The electron density climbs from vacuum to 100n.. The PSC results with €; = 0 and 0.02 are much the same,
but with €, = 0.08 there are significant discrepancies in the results compared to the other two simulations suggesting that
there is too much numerical dissipation with €, = 0.08.

= —An(J +17) (28)
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Fig. 4. Integration of model difference equations for electron plasma waves with w,.At = 0.1 showing the fluid velocity vs. time in units such that a wave
period equals 27, electric field vs. time (160 periods), and the electric field and kinetic energy integrals over the volume vs. time (160 periods). (a)
€ =0,v=0.(b) e, =0.02,v=0.
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Fig. 5. One-dimensional PSC conventional PIC simulation of laser absorption in a plasma density gradient for €, = 0,0.02,0.08. (a) Electron phase space,
momentum p,/mec vs. z at 287 fs. (b) Corresponding electric field vs. z at 307 fs.



B.I. Cohen et al./Journal of Computational Physics 229 (2010) 4591-4612 4601

The analysis of the high-density model equations indicates that the finite-difference equations support an odd-even
oscillation if the integration scheme is centered, and this mode is damped if properly decentered. There is no strong evidence
of a persistent growing odd-even oscillation in the numerical integrations of the model equations with a noise source in-
cluded when the equations are centered or when the equations are slightly decentered, although a transient excursion in
the electric field energy is observed in Fig. 3 when the scheme is centered. We have shown that a small amount of decen-
tering can be included in the PSC particle pusher with no effect on the simulation results.

We next address some of the electromagnetic modes supported by the finite-difference equations. Consider the simplest
fluid analysis of Egs. (2), (6) and (7) and the linearized cold-plasma fluid equations of motion for fields and fluid quantities
(v, vy, Ex, Ey, By, By, J,J,) with wave propagation k = k,Z and uniform background magnetic field By = Boz. The reduced Am-
pere’s law and Faraday’s law yield:

41 O
Aoy (29)

Multiplying the linearized electron and ion cold-fluid equations for Z = 1 by the number density ny, and adding them with
the electron inertia and collisions neglected, we obtain

VXVXE:kﬁﬁz—%%VxB:

nom,-gvi =eny(vi—V,) xBy/c—] = CB—BO

><1”lm'2
ot (L)

ot (30

2
0
We next substitute the expression for J from Eq. (30) in Eq. (29) to obtain one equation for the electric field E. A second equa-
tion for the electric field is deduced from the ion equation of motion: E = —v; x By/c + (m;/e)dv;/dt. Equating the two
expressions for E and Fourier analyzing in time, —iw = 9/8t, we obtain the following vector equation:

w? .
Kfoc— + Q,) Vyi + 100y
Q;

2

X+ |iovy; + <cx%79i> ux,,}yzo (31)
i

where o = wf,i/kﬁcz and Q; = eBy/mc is the ion cyclotron frequency. The determinant of the velocity coefficients in Eq. (31)
yields the following dispersion relation:

2 2
<O(%*Qi> 70)2 = 0 (32)
i

The dispersion relation in Eq. (32) yields Alfvén waves at long wavelengths and low frequency, w = +k,v, = £k,c€;/wp;
for w < ;, and whistler waves at short wavelengths and high frequencies, w = i(kfcz/wf,i)Q,v for @ > Q;. The whistler
mode having the higher frequency sets the more stringent constraint on the time step required for stability using an explicit
time integration. We can write the stability condition as

2
|wAt| = (k;Az)® @ %Zwom <0(1) (33)
where Q, = eBy/m,c is the electron cyclotron frequency. Based on experience in simulations of fast ignition [12], we estimate
that Q./wo < O(1). In order that the explicit solution of Maxwell’s equations remain well behaved at the highest density in
the low-density region, then c/w,.Az > O(1). We also have k,Az < 7. If the transition from the full Maxwell equations to the
high-density equations occurs at 100n,, i.e. w2,/®w§ = 100, then wpAt < 0.1 is required for stability and needed for accuracy;
and the inequality in Eq. (33) is also satisfied.

Now consider the situation when electron-ion collisions are included in the electromagnetic modes at plasma densities
exceeding 100n. with a negligible applied magnetic field (By ~ 0). Adding the electron and ion equations of motion in the
cold-fluid limit, one obtains nom;dv;/dt = (m./e)v,]J, from which we solve for J. We then use Eq. (29) to determine E as before
and use the alternative equation for E from the ion equation of motion previously obtained to arrive at a dispersion relation.
At these high densities and for relatively cold background electron temperatures, v,; > €., the dispersion relation yields a
damped electromagnetic mode:

22
w=—i kzg
W7,

We note that the right side of Eq. (34) is not a function of density, except for In A in the collision frequency. Analysis of the

Vei (34)

difference equations for this mode yields sin(wAt) = ke veiAt, and the right side of this equation must be less than unity in

2
Wpe

magnitude so that the explicit integration of the finite-difference equations remains stable for this damped electromagnetic
mode. The stability condition is then

(k,Az)* Vet < 1 (35)

2
W2, Ax?
It is convenient to evaluate this condition at the transition between the low and high-density regions, e.g. 100n., in which

case ¢*/wl,Ax* = O(1). Then Eq. (35) is equivalent to veAt < 0(1)(k,Az)™* < O(1/m2) at 100n,.
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In addition to the time-step constraints described in the preceding in the high-density plasma where the Ohm’s law is
used, deduced from or given by Eqgs. (27), (33), (34) and (35), we must still resolve electron and ion motion across the grid,
vAt/Ax < 1, the electron cyclotron motion Q.At < 1, and the collision frequencies for the fast electrons and the background
electrons and ions, for sake of accuracy and stability of the simulation. The accuracy constraints on the electron-electron,
electron-ion, and ion-ion collisions of the background plasma persist in the high-density region. The electron-ion collisions
have to be computed with sufficient accuracy so that these collisions are self-consistent with the resistivity in the Ohm’s law.
We are investigating how to compute the collisions in the background plasma efficiently but with sufficient accuracy. Sub-
cycling the collisions is one option or we may use simplified collision operators exploiting that the background ions and cold
electrons remain close to thermal equilibrium at high collisionalities. The plasma frequency does not have to be resolved in
the high-density region. The gradient lengths of the fields and the plasma must be resolved by the grid in the high-density
region but not the skin depth nor the Debye length. However, all of the standard accuracy and stability conditions still apply
in the low-density region where the conventional explicit time integration of the complete Maxwell and particle equations is
undertaken [1,31,32].

The use of the reduced magneto-hydrodynamic equations in the high-density region is justified because the reduced
equations yield the same results for problems of interest as the solution of the complete Maxwell’s equations for the electric
and magnetic fields in the transition region where the plasma has become relatively collisional. The solution for the electric
field is reasonably continuous. If the electric field is continuous and smooth, then Faraday’s law will generate relatively con-
tinuous magnetic fields across the interface. The PIC and complete Maxwell equations solution in the low-density region suf-
fers more from particle noise than does the solution of the reduced equations (the latter set has eliminated electron plasma
waves and light waves, so its thermal fluctuation level is inherently lower [1,3,24]). We have experimented with spatial
smoothing of the computed electric field across the transition boundary in case it is needed. So far in our two-region exten-
sion of the PSC, we have not had to do any spatial smoothing of the electric field across the boundary between the low and
high-density regions (although we digitally smooth the electric and magnetic field in the high-density region) nor have we
had to decenter the PIC equations of motion to control an odd-even oscillation. In our test-bed computations using the mod-
el equations given in the preceding, we have had good success with the following two simple spatial smoothing algorithms.

The first smoothing scheme consists of iterating the following relation:

wy _ 1w " g0

" = (B + 26 +E,) (36)

over an interval surrounding the boundary between the low and high-density regions, where r indicates the iteration level

and the subscript j indicates the spatial grid index. In practice, we limit the number of iterations to a small integer. We have

used intervals from three cells on either side of the interface to the entire overdense domain and obtained good results.
A second spatial smoothing scheme worked equally well:

E; = BE/ + (1 - B)E/ (37)

where 8 = (i — AL/2Ax —j)/AL, AL is the interpolation interval, i is the grid cell index denoting the boundary between the low
(1) and high (II) density regions, i — AL/2Ax < j < i+ AL/2Ax, and E'" is the electric field determined by the low/high-density
field equations. In this second smoothing scheme the electric field is solved using the equations of region I for j < i+ AL/2Ax
and the equations of region II for j > i — AL/2Ax.

Fig. 6 shows the results of integrating the model finite-difference equations for propagation of a linearly polarized elec-
tromagnetic wave (E,, By) into a density gradient with a very weak noise source in the plasma current using the first smooth-
ing scheme with just a single pass of the smoothing operator. In addition, we have included the displacement current as
described in Eqs. (9)-(11). We display B, and E; vs. z at t = 125 where the boundary between the regions is at z = 37.5 with

(@) (b) (c)

Fig. 6. One-dimensional integration of model equations for laser propagation in a plasma density gradient with digital spatial smoothing around the
transition from low to high-density regions at z=37.5 over 20Ax on either side of the interface with units such that e/m. = ¢ = wy = 1. (a) Plasma
frequency w,. and electron-ion collision frequency v,; vs. z. (b) Longitudinal electric field E, vs. z at t = 125. (c) Magnetic field B, vs. z at t = 125.
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parameters e/m, = ¢ = Wy = 1, At = 0.025, Az = 0.05, system length L, = 50, AL = 40Ax, incident wave amplitude in vacuum
By = 0.01, noise amplitude in the plasma currents 10~'°, suppressing electron inertia and electron pressure in the Ohm’s law
for the background electrons, and with spatial variation of the electron plasma frequency and electron-ion collision fre-
quency as shown in Fig. 6(a). Both smoothing schemes obtained much the same results which differ negligibly from doing
no smoothing or interpolation of the electric field across the interface between the regions.

This section of the paper has presented an analysis of the time-integration characteristics of the reduced physics model
used in the high-density region, described an extension that includes the displacement current in Ampere’s law, discussed
two smoothing schemes for the electric field, and illustrated some of the algorithmic issues in a simplified test-bed model.
The reduced physics model in the high-density region removes light waves and electron plasma waves; the electromagnetic
skin depth and electron Debye length do not have to be resolved by the spatial mesh; and the time step is not constrained by
the electron plasma frequency in the high-density region. The simulations presented in the next section illustrate that the
new PIC-hybrid framework can achieve a large computational savings by allowing the use of larger time steps and a larger
spatial grid cell widths, which then allows the use of fewer total particles for a system with the same physical dimensions
while maintaining the same number of particles per cell.

4. PSC simulations

We have extended the PSC code into a prototype two-region code and undertaken one-dimensional (1D) and two-dimen-
sional (2D) simulations to test the new composite simulation framework. First we report experience with a few 1D simula-
tions. The 1D simulation undertaken with PSC (full Maxwell equations and no two-region extension) shown in Fig. 2 is used
as a benchmark for simulations with the two-region, extended PSC+ code. In this simulation a laser pulse is propagated into a
plasma density gradient. The parameters for this 1D simulation are described in Section 2. The interface between the com-
plete Maxwell equations solver and the high-density field solver based on Ohm'’s law is located at the point where the initial
density profile reaches 90n,, approximately at 9 pm. The PIC two-region simulation was performed at a resolution of 100
cells per wavelength, 100 ion particles per cell, and 400 electron particles per cell (Z = 4 for copper). With 200 cells per mi-
cron (cpm), 100 ion particles per cell, and 400 electron particles per cell, PSC required 64 cpus and 2 h of wall clock time to do
the simulation in Fig. 2. The computations increase linearly with the total number of cells for fixed number of particles per
cell and fixed time step, and become impractically large in 2D and 3D if we want to undertake many simulations, each with
reasonably short turnaround times. In the 1D PSC simulations we pick a static boundary between the low-density and high-
density regions. In the 2D PSC simulations the boundary between the two regions is again static, and the boundary is planar
(a constant density surface at the beginning of the simulation). The electric field is determined up to and including the
boundary by the low-density Maxwell-PIC equations, and the electric field in the high-density region is determined by
Ohm’s law omitting the gradient of the electron pressure and the momentum exchange term with the fast electrons. In
2D the v, x B term is retained on the right side of the Ohm’s law, but not in 1D. So far we have not employed any of the
spatial smoothing algorithms operating on the electric field across the low to high-density interface described in Section
3 in the PSC simulations. For the magnetic fields in the high-density region that arise in the 2D simulations, we find that
Q.7 < 1, for which the Braginskii resistivity is a scalar (Section 2).

We have undertaken two 1D two-region PSC simulations (Fig. 7) with and without the displacement current in Ampere’s
law in the high-density region. The displacement current is retained in the high-density region of the 2D two-region hybrid
simulations with the v, x B term in Ohm’s law determined directly from the electron particle mean velocity accumulated on
the grid. The electron density used in Ohm’s law in the high-density region in this simulation is computed either directly
from the electron particle data or from the electron particle data with a current correction to enforce consistency with Am-
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Fig. 7. One-dimensional simulations of laser absorption in a plasma density gradient. (a) Electric field E, vs. z at 93 fs in PSC conventional PIC and two-
region extended PSC simulations with 100 cpm and 100 particles per cell. (b) Electric field E, vs. z at 93 fs in two-region extended PSC simulations with
20 cpm and 100 cpm. ]f is the current carried by the background electrons and ions.
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pere’s law, Eq. (7). In 1D the current correction is calculated by adding a drift to all of the background electrons in each cell
such that the total J, particle current summed over all species (and time-averaged over three laser cycles to smooth the data)
is zero. The electric field, background electron density, and electron temperature are digitally smoothed in the high-density
region with a single-pass 1-2-1 filter. The plasma currents used in Maxwell’s equations are digitally smoothed over the entire
domain similarly. The physics parameters of the two-region PIC-hybrid simulations are identical to those of the PIC simu-
lation described in Fig. 2. The interface between the low and high-density regions is located at the point where the initial
density profile reaches 90n., approximately at 9 pm. The two-region PIC-hybrid simulation was performed at a resolution
of 100 cells per wavelength, 100 ion particles per cell, and 400 electron particles per cell. Fig. 7(a) shows the comparison
of PSC and two-region PSC+ for 100 cpm. The electric fields vs. z at 93 fs agree well with one another and with the
E, = n]’z’ relation. Recall that ]’Z’ is the current carried by the background electrons and ions excluding the fast-electron cur-
rent. We note that the electron density climbs to 360n, for which v,;At > 1. The noise reduction in the high-density region in
the two-region simulation is dramatic.

Fig. 7(b) shows the comparison of the longitudinal electric field E, vs. z in the two two-region PSC+ simulations with n, in
Ohm'’s law determined directly from the electron particle data with no current correction, and with 100 particles per cell per
species and 20 cells per micron or 100 cells per micron throughout. The boundary between the low and high-density regions
in the two-region simulations was taken at 9 pum for 100 cpm and 7 pm for 20 cpm. As the spatial resolution decreases, the
time step is increased so that the Courant conditions are maintained. However, this forces the boundary between the low
and high-density regions to shift to lower density to limit the maximum value of wp.At < O(1) to maintain stability and
accuracy in the low-density side of the simulation. The electric fields compare very well. With the fivefold increased time
step and fivefold decreased number of cells and particles, the 1D two-region simulation for 20 cpm should be at least
25x faster (the operations count in the simulation scales linearly in the product of the number of time steps times the num-
ber of particles, excluding considerations of the binary collisions whose computational scaling is stronger than linear). In 2D
the simulation is expected to run at least 5° = 125x faster and more than 625x faster in 3D compared to using the
conventional PSC code if the physical time and spatial dimensions are held fixed. Because the binary collisions are a large
contributor to the operations count, a larger savings in run time is in fact realized for a fivefold reduction in spatial resolution
per spatial dimension with fixed number of particles per cell because of the particle sorting required in the binary collision
algorithm.
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Fig. 8. One-dimensional simulations of laser absorption in a plasma density gradient showing the electric field E,/E,, and electron temperature T, and
electron density n,, in arbitrary units at 93 fs with 100 cpm and 100 particles per cell: (a) conventional PSC PIC simulation; (b) two-region extended PSC
simulation; and (c) two-region extended PSC simulation with electron current correction.
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Fig. 9. One-dimensional simulations of laser absorption in a plasma density gradient showing the fast-electron current]§ and the total current J,, in units of
Jo = encc at 93 fs with 100 cpm and 100 particles per cell: (a) conventional PSC PIC simulation; (b) two-region extended PSC simulation; and (c) two-region
extended PSC simulation with electron current correction.
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In Figs. 8 and 9 we compare three 1D PSC simulations using the same parameters as in Fig. 7(a): full PIC (same simulation
used in Fig. 7(a)), two-region hybrid model with n. computed directly from the particle electrons, and two-region hybrid
model with the displacement current retained as in Eq. (9) and n, computed directly from the particle electrons with a cur-
rent correction made to ensure consistency with Ampere’s law. Plots of E,, 11]2, T., and n, vs. z are shown from the three sim-
ulations in Fig. 8. Diagnostic plots of]{; and the total particle J, vs. z from the three simulations are shown in Fig. 9. We do not
compare the ion temperatures as the results for the ion dynamics showed negligible differences. We note that the
E,, 11]12’, ]ﬁ, T., and n, data differ very little in the three simulations, although E, in the low-density region is relatively noisy
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Fig. 10. Two-dimensional PSC simulations of laser absorption in a plasma density gradient extending the 1D simulations shown in Figs. 2, 7, 8 and 9 to 2D:
full PIC, two-region PIC-hybrid at full resolution (100 cpm), and two-region PIC-hybrid at reduced resolution (20 cpm) showing 2D contours in (a), (c), and
(e) and line-outs in (b), (d), and (f) of n vs. z in the midplane at 90 fs. The dashed lines in (c) and (e) show the location of the boundary between the low and
high-density regions.
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and there is noise in E; at high density in full PIC. The total J, diagnostic in the high-density region shows the most significant
differences between the three simulations. It is important to note that the two-region model in 1D invokes J, = 0 in the high-
density region if the displacement current is omitted and 4nJ, = —9E,/ot if the displacement current is retained. We also
note that in the full PIC simulation in the high-density region J, = 0 to very good approximation implying that the displace-
ment current 9E,/dt is very small (Fig. 9(a)), which lends support to the assumptions made in the hybrid model. Because the
displacement current is small in the high-density region, it is sufficient that the current correction used in the third simu-
lation tries to recover J, =0 which is equivalent to satisfying Eq. (8), because the difference between J, =0 and
4mJ, = —OE,/ot is small. While the total J, particle current in Fig. 9(b) is small compared to [ in the high-density region,
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Fig. 11. Two-dimensional PSC simulations extending the 1D simulations shown in Figs. 2, 7, 8 and 9 to 2D: full PIC, two-region PIC-hybrid at full resolution
(100 cpm), and two-region PIC-hybrid at reduced resolution (20 cpm) showing 2D contours and line-outs of T, vs. z in the midplane at 90 fs.
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30 pm x 30 pm. In the 2D simulations we use 10 ions per cell and 40 electrons per cell. The two-region hybrid simulations
include the displacement current and use n, determined from the particle electrons with current correction for consistency
with Ampere’s law. The current correction in 2D involves computing the background electron density from the particles after
adding a local vector drift to the background electron velocities in the 2D yz simulation plane so that Eq. (7) is satisfied in the
high-density region. The simulation addresses laser propagation, absorption and electron transport for the incident laser
pulse with Gaussian transverse profile (6 pm full width at half maximum). In these simulations we used either 100 cpm
or 20 cpm and 10 ions per cell/40 electrons per cell modeling a copper plasma. The electric and magnetic fields, background
electron density, and electron temperature are digitally smoothed in the high-density region with successive 1D 1-2-1 fil-
tering (single pass) in the two directions. The plasma currents used in Maxwell’s equations are digitally smoothed over
the entire domain similarly. The electron density climbs to 360n.. The other parameters for these simulations are the same
as in the 1D simulations described in Fig. 2, 7, 8 and 9. The density profile is initially uniform in the transverse direction and
identical to the 1D profile in the longitudinal direction. The interface between the two regions (full PIC and Maxwell’s equa-
tions and PIC plus Ohm'’s law) is static and located where the density exceeds 90n. at z = 8 um. The laser is incident at z = 0,
propagates in z, and has a finite spot size in y. We plot n, in Fig. 10, T, in Fig. 11, E, in Fig. 12, B, in Fig. 13, total J, in Fig. 14,
and the fast electron current ]§ in Fig. 15, all at 90 fs. We plot 2D contours and axial line-outs vs. z in the midplane, except for
B.

The comparisons of the results are generally good, but there are some modest differences in the longitudinal electric
fields, the magnetic fields, the electron temperatures, and the longitudinal currents. The PIC-hybrid simulations results
for E, are significantly less noisy in the high-density region than the full PIC results. The numerical noise in the full PIC sim-
ulation leading to fluctuations in the electric field of the order of <EZ)”2 ~ 0.001E, (Eo; and By are the incident electric and
magnetic field amplitudes in the laser) cause a rise in the background temperature from 100 eV up to 150 eV even before
the arrival of laser-driven electrons. At 90 fs the background electron temperature T, is slightly higher near the laser beam
axis in y for z > 8 um in the full PIC simulation than in the PIC-hybrid simulations shown in Fig. 11. This reduces the coll-
isionality and the resistivity of the plasma deep in the target, i.e. at z > 20 um at the time shown here. However, the elec-
tromagnetic field noise and reduced collisionality affect the transport of the fast electrons very little in the full PIC simulation
as compared to the PIC-hybrid simulations in Fig. 15. Numerical self-heating can be mitigated by higher-order particle shape
functions or increased number of particles per cell, both of which are beyond the scope of the present study. In contrast, the
numerical noise level in the PIC-hybrid simulation is lower, on the order of 107E,.

In Fig. 11 there is a difference in the electron temperature profile at low densities and well off the axis in z determined by
the centroid of the incident laser in the low-resolution simulation results shown in Fig. 11(c) compared to the results in
Fig. 11(a) and (b). Both the high and low-resolution simulations exhibit some numerical heating of the electron velocity dis-
tributions in the low-density full-PIC regions of the simulations. In the low-resolution simulation the resolution of the elec-
tron Debye length and the statistical resolution are less than in the high-resolution cases, which fact makes the numerical
heating of the electron velocity distribution somewhat stronger in the full-PIC simulation region of Fig. 11(c). We think that
this contributes to the difference observed in the side lobes of the electron temperature profile in Fig. 11(c) compared to the
profiles in Fig. 11(a) and (b). If significant numerical heating is occurring in the full-PIC region of the PIC-hybrid simulations,
this can be mitigated by using a higher spatial resolution only in the full-PIC low-density region; the efficacy of this strategy
will be studied in future work.

There are also differences in the small magnetic fields that arise at densities n, > n. in the full PIC and PIC-hybrid simu-
lations (Fig. 13). On the high-density side of the interface between the low and high-density models, there is a small axial
magnetic field B, ~ 0.01B, located in the density ramp before the plateau (see Fig. 13(b) and (c)). A similar magnetic field is
also present in the collisional PIC run, but lower in magnitude and slightly different in shape, and somewhat obscured by
noise, see Fig. 13(a). This difference between the two simulation approaches can be explained by differences in the profile
of the plasma electrical resistivity which is involved in relating the fast current generated in the laser interaction with the
electric field in the PIC-hybrid region through Ohm’s law. The plasma resistivity is related to the plasma temperature via
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Fig. 13. Two-dimensional PSC simulations extending the 1D simulations shown in Figs. 2, 7, 8 and 9 to 2D: full PIC, two-region PIC-hybrid at full resolution
(100 cpm), and two-region PIC-hybrid at reduced resolution (20 cpm) showing 2D contours of B, at 90 fs. By = Eg/c = 100 MG.
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Fig. 14. Two-dimensional PSC simulations extending the 1D simulations shown in Figs. 2, 7, 8 and 9 to 2D: full PIC, two-region PIC-hybrid at full resolution
(100 cpm), and two-region PIC-hybrid at reduced resolution (20 cpm) showing 2D contours and line-outs of the total current J, vs. z in the midplane at 90 fs.
Jo =encc.

7 o« T73/2, which explains how stronger heating in the density gradient between 90 and 360n, in the PIC simulation allows
less magnetic field formation (T, is slightly larger which makes the resistivity smaller; and E from Ohm'’s law is smaller in
consequence, which then makes B smaller as a result of Faraday’s law). Laser-induced heating of the density gradient even-
tually slows the magnetic field growth even in the PIC-hybrid simulation. In any case, the magnitude of the magnetic fields
and the narrowness of the magnetic field layer suggest that the differences in the simulation outcomes due to the effects of
the magnetic field are negligible here.

In the plasma at higher density than in the density-ramp region, the electron density and the resistivity are relatively con-
stant; and the curl of the electric field more nearly cancels, which through Faraday’s law forces the magnetic field to remain
small. The smallness of the magnetic field in turn forces the curl of the magnetic field and the total current to be small given
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Fig. 15. Two-dimensional PSC simulations extending the 1D simulations shown in Figs. 2, 7, 8 and 9 to 2D: full PIC, two-region PIC-hybrid at full resolution
(100 cpm), and two-region PIC-hybrid at reduced resolution (20 cpm) showing 2D contours and line-outs of the fast-electron current ]ﬁ vs. z in the midplane
at 90 fs. J, = encc.

that the displacement current is also small. However, in the density-ramp region, the gradients of the electron density and
the resistivity due to the temperature gradient allow the curl of E = %]’ to be finite, which allows a small magnetic field to be
generated.

In Fig. 14(e) and (f) we note that the total J, current in the reduced resolution PIC-hybrid simulation is not as close to zero
in the high-density region as in Fig. 14(a)-(d) that show the total current in the full PIC and PIC-hybrid simulations at full
resolution. By doing additional simulations we have determined that the value of J, in the high-density region in the low-
resolution simulation is reduced if the rise time of the laser (artificially short in the simulation) is better resolved by the time



step, which then improves the statistics in the lag average of the axial current used in correcting the background electron
density in the high-density physics model.

The two PIC-hybrid simulations at the two resolutions agree with one another relatively well. The full PIC and PIC-hybrid
PSC two-dimensional simulations at full resolution required approximately 30,000 CPU hours, while the PIC-hybrid simula-
tion at reduced resolution required less than an hour on 64 processors, which gave >500x reduction in the computational
cost.

We have begun to apply the new framework introduced here to the study of diverse physics applications addressing the
physics of fast ignition, which will be reported elsewhere. We believe that the noise reduction in the PIC-hybrid simulations
is an advantage over the full PIC simulations. However, more research is needed on what is the physically correct thermal
noise level and how to simulate it in a particle or hybrid code for conditions in which n./] is less than unity at high-densities
for a given electron temperature. We acknowledge that there is more work to be done in understanding the fidelity of both
the full PIC and PIC-hybrid simulations, in controlling the particle noise in the full-PIC simulation domains, in comparing the
full PIC and PIC-hybrid simulations, and in optimizing the PIC-hybrid framework.

5. Summary and conclusions

We have introduced a new framework for simulating the physics of short-pulse laser-plasma interactions of intense
pulses at spatial and temporal scales relevant to experiments, using a new approach that combines a multi-dimensional col-
lisional electromagnetic PIC code with a reduced model of high-density plasma based on Ohm’s law. In the latter, collisions
damp out plasma waves so that electron inertia in the background electrons and the displacement current are unimportant;
and an Ohm’s law with electron inertia effects neglected determines the electric field. In addition to yielding orders of mag-
nitude in speed-up while avoiding numerical instabilities, this allows us to model many aspects of fast-ignition laser plasma
interactions and fast-electron transport in a single unified framework: the laser-plasma interaction at sub-critical densities,
energy deposition at relativistic critical densities, and fast-electron transport at high densities. We hope to address key ques-
tions such as the multi-picosecond temporal evolution of the laser-energy conversion into hot electrons, the impact of return
currents on the laser-plasma interaction, the effects of resistive heating in the plasma, and the effects of self-generated elec-
tric and magnetic fields on electron transport with the framework introduced here.

We have reported 1D and 2D applications that illustrate the algorithm and its ability to simulate fast-ignition physics. We
compare simulations using full PIC to those using the two-region PIC-hybrid framework. The use of the two-region algorithm
relaxes the requirements on spatial and temporal resolution over conventional PIC simulation using finite-difference meth-
ods and explicit time integration of the complete set of Maxwell’s equations. By allowing the use of a coarser spatial mesh,
the total number of particles can be reduced, which leads to a significant computational savings. The improvements in run
time for the same physical simulation increase with the number of spatial dimensions: we achieve a reduction in computer
run time that is > 40x in our reduced-resolution 1D PIC-hybrid simulation example and > 500x shorter in our 2D PIC-hy-
brid simulation example as compared to the full PIC simulations at higher resolution for the same problem.

In the model equations and the simulations presented here, we have frozen the location of the boundary between the low
and high-density plasma domains. However, making the location of this boundary static is not required; and we are under-
taking simulations in which the boundary moves to higher density if the background plasma heats, i.e. the location of the
boundary becomes adaptive. In general, the boundary location should evolve and migrate to either higher or lower density
if the plasma heats or cools, respectively. What matters in determining the location of the boundary is that the high-density
plasma is defined by the electron collision frequency being a significant fraction of the electron plasma frequency. Moreover,
the boundary is not required to be a line in two dimensions or a plane in three dimensions.

Although our two-region algorithm significantly relaxes constraints on time step, grid size, and particle number, there are
residual requirements on spatial and temporal resolution. An important question is how accurate a representation is needed
for the collision effects in the high-density, resistive, background plasma, because the computational burden of calculating
the collisions in a particle simulation is significant. We will give this issue more attention in future work. There are other
physics and numerical considerations that affect the new framework introduced here: these are not fully settled and also
will receive more attention in future work.
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